Frogfish


Frogfishes, family Antennariidae, are a type of anglerfish in the order Lophiiformes. They are known as anglerfishes in Australia, where 'frogfish' refers to a different type of fish. Frogfishes are found in almost all tropical and subtropical oceans and seas around the world, the primary exception being the Mediterranean Sea.

Range


Frogfish live in the tropical and subtropical regions of the Atlantic and Pacific, as well as in the Indian Ocean and the Red Sea. Their habitat lies for the most part between the 20-degree isotherms, in areas where the surface level water usually has a temperature of 20 C (68 F) or more. They extend beyond the 20-degree isotherms in the area of the Azores, Madeira, and the Canary Islands, along the Atlantic coast of the USA, on the south coast of Australia and the northern tip of New Zealand, coastal Japan, around Durban, South Africa, and at Baja California.[2] The most types are found in the Indo-Pacific region with the highest concentration around Indonesia. In the tiny Lembah Strait, north-east of Sulawesi, divers have found nine different species. Frogfish live generally on the ocean floor around coral or rock reefs, at most up to 100 meters (330 ft) deep.
There are a few exceptions to these general limits. The Brackishwater Frogfish is at home in ocean waters as well as brackish and fresh water around river mouths. The Sargassumfish lives in clumps of drifting sargassum, which often floats into the deeper ocean and have been known to take the sargassumfish as far north as Norway.

Features

Frogfish have a stocky appearance, atypical of fish. Ranging from 2.5–38 cm (1-15 inches) long, their plump, high-backed, non-streamlined body is scaleless and bare, often covered with bumpy, bifurcated spinules. Their short bodies have between 18 and 23 vertebrae and their mouths are upward pointed with palatal teeth. They are often brightly colored, white, yellow, red, green, or black or spotted in several colors in order to blend in with their coral surroundings. Coloration can also vary within one species, making it difficult to differentiate between them.

Rather than typical dorsal fins, the front-most of the three fins is called the illicium or "rod" and is topped with the esca or "lure". The illicium often has striped markings, while the esca takes a different form in each species. Because of the variety of colors even within a single species, the esca and illicium is a useful tool to differentiate among different varieties. Some of them resemble fish, some shrimp, some polychaetes, some tubeworms, and some simply a formless lump; one genus, Echinophryne has no esca at all. Despite very specific mimicry in the esca, examinations of stomach contents do not reveal any specialized predation patterns, for example, only worm-eating fish consumed by frogfish with worm-mimicking esca. If lost, the esca can be regenerated. In many species the illicium and esca can be withdrawn into a depression between the second and third dorsal fins for protection when they are not needed.
Frogfish have small, round gill openings behind their pectoral fins. With the exception of Butler's frogfish and the Rough Anglerfish, frogfish use a gas bladder to control their buoyancy.

Mimicry and camouflage



The unusual appearance of the frogfish is designed to conceal it from predators and sometimes to mimic a potential meal to its prey. In ethology, the study of animal behavior, this is known as aggressive mimicry. Their unusual shape, color, and skin textures disguise frogfish. Some resemble stones or coral while others imitate sponges, or sea squirts with dark splotches instead of holes. In 2005, a species was discovered, the striated frogfish, that mimics a sea urchin while the sargassumfish is colored to blend in with the surrounding sargassum. Some frogfish are covered with algae or hydrozoa. Their camouflage can be so perfect, that sea slugs have been known to crawl over the fish without recognizing them.
For the scaleless and unprotected frogfish, the camouflage is an important defense against predators. Some frogfish can also inflate themselves, like pufferfish, by sucking in water in a threat display. In aquariums and in nature, frogfish have been observed, when flushed from their hiding spots and clearly visible, to be attacked by clownfish, damselfish, and wrasse, and in aquariums, to be killed.
Many frogfish can change their color. The light colors are generally yellows or yellow-browns while the darker are green, black, or dark red. They usually appear with the lighter color, but the change can last anywhere from a few days to several weeks. It is unknown what triggers the change.

Movement


Frogfish generally do not move very much, preferring to lie on the sea floor and wait for prey to approach. Once the prey is spotted, they can approach slowly using their pectoral and pelvic fins to walk along the floor. They have two "gaits" that they can use. In the first they alternately move their pectoral fins forward, propelling themselves somewhat like a two-legged tetrapod, leaving the pelvic fins out. Alternately, they can move in something like a slow gallop, whereby they move their pectoral fins simultaneously forward and back, transferring their weight to the pelvic fins while moving the pectorals forward. With either gait, then can only cover short stretches.
In open water, frogfish can swim with strokes of the tail fin. They also have a kind of jet propulsion that is often used by younger frogfish. It is achieved by rhythmically forcing their breath-water out through their gill openings, which lie behind their pelvic fins.
The sargassum frogfish has adapted fins which can grab strands of sargassum, enabling it to "climb" through the seaweed.

Hunting


Frogfish eat crustaceans, other fish, and even each other. When potential prey is first spotted, the frogfish follows it with its eyes. Then, when it approaches within roughly seven body-lengths, the frogfish begins to move its illicium in such a way that the esca mimics the motions of the animal it resembles. As the prey approaches, the frogfish will slowly move itself to prepare for its attack; sometimes this involves approaching the prey or "stalking" while sometimes it is simply adjusting its mouth angle. The catch itself is made by the sudden opening of the jaws, which enlarges the volume of the mouth cavity up to twelve-fold, pulling the prey into the mouth along with water. The attack can be as fast as 6 milliseconds. The water flows out through the gills, while the prey is swallowed and the esophagus closed with a special muscle to keep the victim from escaping. In addition to expanding their mouths, frogfish can also expand their stomachs to swallow animals up to twice their size.
Slow-motion filming has shown that the frogfish sucks in its prey in just six milliseconds, so fast that other animals can't see it happen. This is less time than it takes a muscle to contract so the source of the motion remains unknown. Frogfish have also been observed to eat lionfish; the latter's poison appears to have no effect.

See also..

  • Frogfish Reproduction
[ Read More ]

Lanternfish

Deep Sea Fish
Lanternfishes (or myctophids, from the Greek mykter, "nose" and ophis, "serpent") are small mesopelagic fish of the large family Myctophidae. One of two families in the order Myctophiformes, the Myctophidae are represented by 246 species in 33 genera, and are found in oceans worldwide. They are aptly named after their conspicuous use of bioluminescence. Their sister family, the Neoscopelidae, are much fewer in number but superficially very similar; at least one neoscopelid shares the common name 'lanternfish': the large-scaled lantern fish, Neoscopelus macrolepidotus.
Sampling via deep trawling indicates that lanternfish account for as much as 65% of all deep sea fish biomass. Indeed, lanternfish are among the most widely distributed, populous, and diverse of all vertebrates, playing an important ecological role as prey for larger organisms. With an estimated global biomass of 550 - 660 million metric tonnes, several times the entire world fisheries catch, lanternfish also account for much of the biomass responsible for the deep scattering layer of the world's oceans. In the Southern Ocean, myctophids provide an alternative food resource to krill for predators such as squid and the king penguin. Although plentiful and prolific, currently only a few commercial lanternfish fisheries exist: limited operations off South Africa, in the sub-Antarctic, and in the Gulf of Oman.

Description

Deep Sea Fish
Lanternfish typically have a slender, compressed body covered in small, silvery deciduous cycloid scales (ctenoid in four species), a large bluntly rounded head, large elliptical to round lateral eyes (dorsolateral in Protomyctophum species), and a large terminal mouth with jaws closely set with rows of small teeth. The fins are generally small, with a single high dorsal fin, a forked caudal fin, and an adipose fin. The anal fin is supported by a cartilaginous plate at its base, and originates under, or slightly behind, the rear part of the dorsal fin. The pectoral fins, usually with eight rays, may be large and well-developed to small and degenerate, or completely absent in a few species. In some species, such as those of the genus Lampanyctus, the pectorals are greatly elongated. Most lanternfish have a gas bladder, but it degenerates or fills with lipids during the maturation of a few species. The lateral line is uninterrupted.
Deep Sea Fish
In all but one species, Taaningichthys paurolychnus, a number of photophores (light-producing organs) are present; these are paired and concentrated in ventrolateral rows on the body and head. Some may also possess specialised photophores on the caudal peduncle, in proximity to the eyes (e.g., the "headlights" of Diaphus species), and luminous patches at the base of the fins. The photophores emit a weak blue, green, or yellow light, and are known to be arranged in species-specific patterns. In some species, the pattern varies between males and females. This is true for the luminous caudal patches, with the males' being typically above the tail and the females' being below the tail.
Lantern fish are generally small fish, ranging from about 2 centimetres (0.79 in) to 30 centimetres (12 in) in length, with most being under 15 centimetres (5.9 in). In life, shallow-living species are an iridescent blue to green or silver, while deeper-living species are dark brown to black.

Ecology

Lanternfish are well-known for their diel vertical migrations: during daylight hours most species remain within the gloomy bathypelagic zone, between 300 metres (980 ft) and 1,500 metres (4,900 ft) in depth, but towards sundown the fish begin to rise into the epipelagic zone, between 10-100 metres (33-330 feet) deep. The lanternfish are thought to do this to avoid predation, and because they are following the diel vertical migrations of zooplankton, upon which the lanternfish feed. After a night spent feeding in the surface layers of the water column, the lanternfish begin to descend back into the lightless depths and are gone by daybreak.
Deep Sea Fish
Most species remain near to the coast, schooling over the continental slope. Different species are known to segregate themselves by depth, forming dense, discrete conspecific layers, probably to avoid competition between different species. Due to the lanternfishes' gas bladders, these layers are visible on sonar scans and give the impression of a "false bottom": this is the so-called deep-scattering layer that so perplexed early oceanographers.
There is great variability in migration patterns within the family. Some deeper-living species may not migrate at all, while others may do so only sporadically. Migration patterns may also be dependent on life history stage, sex, latitude, and season.
The arrangements of lanternfish photophores are different for each species, so it is assumed that their bioluminescence plays a role in communication, specifically in shoaling and courtship behaviour. The concentration of the photophores on the flanks of the fish also indicate the light's use as camouflage; in a strategy termed counterillumination, the lanternfish regulate the brightness of the bluish light emitted by their photophores to match the ambient light level above, effectively masking the lanternfishes' silhouette when viewed from below.
Deep Sea Fish
A major source of food for many marine animals, lanternfish are an important link in the food chain of many local ecosystems, being heavily preyed upon by whales and dolphins; large pelagic fish such as salmon, tuna and sharks; grenadiers and other deep-sea fish (including other lanternfish); pinnipeds; sea birds, notably penguins; and large squid such as the jumbo squid, Dosidicus gigas. Lantern fish themselves have been found to feed on bits of plastic debris accumulating in the oceans. At least one lantern fish was found with over 80 pieces of plastic chips in its gut, according to scientists monitoring ocean plastic in the Pacific Ocean's Eastern Garbage Patch.


[ Read More ]

Deep sea fish

Deep sea fish
Deep sea fish is a term for any fish that lives below the photic zone of the ocean. The lanternfish is, by far, the most common deep sea fish. Other deep sea fish include the flashlight fish, cookiecutter shark, bristlemouths, anglerfish, and viperfish.
Because the photic zone typically extends only a few hundred meters below the water, about 90% of the ocean volume is invisible to humans. The deep sea is also an extremely hostile environment, with pressures between 20 and 1,000 atmospheres (between 2 and 100 megapascals), temperatures between 3 and 10 degrees Celsius, and a lack of oxygen. Most fish that have evolved in this harsh environment are not capable of surviving in laboratory conditions, and attempts to keep them in captivity have led to their deaths. For this reason little is known about them, as there are limitations to the amount of fruitful research that can be carried out on a dead specimen and deep sea exploratory equipment is very expensive. As such, many species are known only to scientists and have therefore retained their scientific name.
Deep sea fish
The fish of the deep sea are among the strangest and most elusive creatures on Earth. In this deep unknown lie many unusual creatures we still have yet to study. Since many of these fish live in regions where there is no natural illumination, they cannot rely solely on their eyesight for locating prey and mates and avoiding predators; deep sea fish have evolved appropriately to the extreme sub-photic region in which they live. Many deep sea fish are bioluminescent, with extremely large eyes adapted to the dark. Some have long feelers to help them locate prey or attract mates in the pitch black of the deep ocean. The deep sea angler fish in particular has a long fishing-rod-like adaptation protruding from its face, on the end of which is a bioluminescent piece of skin that wriggles like a worm to lure its prey. The lifecycle of deep sea fish can be exclusively deep water although some species are born in shallower water and sink on becoming born. Due to the poor level of photosynthetic light reaching deep sea environments, most fish need to rely on organic matter sinking from higher levels, or, in rare cases, hydrothermal vents for nutrients. This makes the deep sea much poorer in productivity than shallower regions. Consequently many species of deep sea fish are noticeably smaller and have larger mouths and guts than those living at shallower depths. It has also been found that the deeper a fish lives, the more jelly-like its flesh and the more minimal its bone structure. This makes them slower and less agile than surface fish.
Deep sea fish
Sampling via deep trawling indicates that lanternfish account for as much as 65% of all deep sea fish biomass. Indeed, lanternfish are among the most widely distributed, populous, and diverse of all vertebrates, playing an important ecological role as prey for larger organisms. With an estimated global biomass of 550 - 660 million metric tonnes, several times the entire world fisheries catch, lanternfish also account for much of the biomass responsible for the deep scattering layer of the world's oceans. In the Southern Ocean, Myctophids provide an alternative food resource to krill for predators such as squid and the King Penguin. Although plentiful and prolific, currently only a few commercial lanternfish fisheries exist: These include limited operations off South Africa, in the sub-Antarctic, and in the Gulf of Oman.
A 2006 study by Canadian scientists has found five species of deep sea fish – roundnose grenadier, onion-eye grenadier, blue hake, spiny eel and spinytail skate – to be on the verge of extinction due to the shift of commercial fishing from continental shelves to the slopes of the continental shelves, down to depths of 1600 meters. The slow reproduction of these fish – they reach sexual maturity at about the same age as human beings – is one of the main reasons that they cannot recover from the excessive fishing.

[ Read More ]